<!DOCTYPE html><html lang="zh"><head>
    <meta charset="utf-8">
    <title>大量对象的优化</title>
    <meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
    <meta name="twitter:card" content="summary_large_image">
    <meta name="twitter:site" content="@threejs">
    <meta name="twitter:title" content="Three.js – 大量对象的优化">
    <meta property="og:image" content="https://threejs.org/files/share.png">
    <link rel="shortcut icon" href="../../files/favicon_white.ico" media="(prefers-color-scheme: dark)">
    <link rel="shortcut icon" href="../../files/favicon.ico" media="(prefers-color-scheme: light)">

    <link rel="stylesheet" href="../resources/lesson.css">
    <link rel="stylesheet" href="../resources/lang.css">
<!-- Import maps polyfill -->
<!-- Remove this when import maps will be widely supported -->
<script async src="https://unpkg.com/es-module-shims@1.8.0/dist/es-module-shims.js"></script>

<script type="importmap">
{
  "imports": {
    "three": "../../build/three.module.js"
  }
}
</script>
    <link rel="stylesheet" href="/manual/zh/lang.css">
  </head>
  <body>
    <div class="container">
      <div class="lesson-title">
        <h1>大量对象的优化</h1>
      </div>
      <div class="lesson">
        <div class="lesson-main">
          <p>本文是关于 three.js 系列文章的一部分. 第一篇文章是 <a href="fundamentals.html">three.js 基础</a>. 如果你还没看过而且对three.js 还不熟悉,那应该从那里开始.</p>
<p>three.js的优化有很多种方式. 常见的一种叫做<em>合并几何体</em>. 每一个你创建的<a href="/docs/#api/zh/objects/Mesh"><code class="notranslate" translate="no">Mesh</code></a>代表一个(或多个)请求系统渲染的命令. 即便是画出来的结果一样, 画两个几何体总是比画一个要费时费力. 所以最好的方式就是将这些mesh合并起来. </p>
<p>让我们来展示一个应用这种优化方式的优秀范例. 让我们来重新创建一个<a href="https://globe.chromeexperiments.com/">WebGL Globe</a>.</p>
<p>第一件事是获取一些数据. WebGL Globe说他们的数据是来自<a href="http://sedac.ciesin.columbia.edu/gpw/">SEDAC</a>. 点开这个网站我们可以看到<a href="https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-basic-demographic-characteristics-rev10">网格化的人口统计学数据</a>. 我这里下载的是以60分为解析度的数据. 打开可以看到</p>
<pre class="prettyprint showlinemods notranslate lang-txt" translate="no"> ncols         360
 nrows         145
 xllcorner     -180
 yllcorner     -60
 cellsize      0.99999999999994
 NODATA_value  -9999
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
 9.241768 8.790958 2.095345 -9999 0.05114867 -9999 -9999 -9999 -9999 -999...
 1.287993 0.4395509 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999...
 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
</pre>
<p>上面的数据首先是几行键值对, 然后是网格化的数据. </p>
<p>为了保证我们的理解没有偏差, 我们先做个2D图</p>
<p>先用这么几行代码载入数据</p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">async function loadFile(url) {
  const res = await fetch(url);
  return res.text();
}
</pre>
<p>上面的代码返回了一个带有指定<code class="notranslate" translate="no">url</code>下文件内容的<code class="notranslate" translate="no">Promise</code></p>
<p>然后写几行数据来解析文件内容</p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">function parseData(text) {
  const data = [];
  const settings = {data};
  let max;
  let min;
  // 对每一行进行切分
  text.split('\n').forEach((line) =&gt; {
    // split the line by whitespace
    const parts = line.trim().split(/\s+/);
    if (parts.length === 2) {
      // 长度为2的必定是键值对
      settings[parts[0]] = parseFloat(parts[1]);
    } else if (parts.length &gt; 2) {
      // 长度超过2的肯定是网格数据
      const values = parts.map((v) =&gt; {
        const value = parseFloat(v);
        if (value === settings.NODATA_value) {
          return undefined;
        }
        max = Math.max(max === undefined ? value : max, value);
        min = Math.min(min === undefined ? value : min, value);
        return value;
      });
      data.push(values);
    }
  });
  return Object.assign(settings, {min, max});
}
</pre>
<p>上面的代码返回了一个有着全部键值对的对象, 然后<code class="notranslate" translate="no">data</code>属性是网格化的数据. <code class="notranslate" translate="no">min</code> 和 <code class="notranslate" translate="no">max</code> 中是 <code class="notranslate" translate="no">data</code> 中的极值</p>
<p>下面是绘图函数</p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">function drawData(file) {
  const {min, max, data} = file;
  const range = max - min;
  const ctx = document.querySelector('canvas').getContext('2d');
  // 新建一个和网格数据尺寸相等的canvas
  ctx.canvas.width = ncols;
  ctx.canvas.height = nrows;
  // 但是以两倍大小绘制防止太小
  ctx.canvas.style.width = px(ncols * 2);
  ctx.canvas.style.height = px(nrows * 2);
  // 用黑灰色填充
  ctx.fillStyle = '#444';
  ctx.fillRect(0, 0, ctx.canvas.width, ctx.canvas.height);
  // 绘制数据点
  data.forEach((row, latNdx) =&gt; {
    row.forEach((value, lonNdx) =&gt; {
      if (value === undefined) {
        return;
      }
      const amount = (value - min) / range;
      const hue = 1;
      const saturation = 1;
      const lightness = amount;
      ctx.fillStyle = hsl(hue, saturation, lightness);
      ctx.fillRect(lonNdx, latNdx, 1, 1);
    });
  });
}

function px(v) {
  return `${v | 0}px`;
}

function hsl(h, s, l) {
  return `hsl(${h * 360 | 0},${s * 100 | 0}%,${l * 100 | 0}%)`;
}
</pre>
<p>然后把上面的代码都合并起来</p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">loadFile('resources/data/gpw/gpw_v4_basic_demographic_characteristics_rev10_a000_014mt_2010_cntm_1_deg.asc')
  .then(parseData)
  .then(drawData);
</pre>
<p>得到了下面的结果</p>
<p></p><div translate="no" class="threejs_example_container notranslate">
  <div><iframe class="threejs_example notranslate" translate="no" style=" " src="/manual/examples/resources/editor.html?url=/manual/examples/gpw-data-viewer.html"></iframe></div>
  <a class="threejs_center" href="/manual/examples/gpw-data-viewer.html" target="_blank">点击此处在新标签页中打开</a>
</div>

<p></p>
<p>嗯... 看起来没什么问题</p>
<p>试试3D效果. 从<a href="rendering-on-demand.html">按需渲染</a>出发, 我们让每一个数据都画成一个box</p>
<p>首先先画一个地球, 这是sphere表面的贴图</p>
<div class="threejs_center"><img src="../examples/resources/images/world.jpg" style="width: 600px"></div>

<p>用这些代码生成地球</p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">{
  const loader = new THREE.TextureLoader();
  const texture = loader.load('resources/images/world.jpg', render);
  const geometry = new THREE.SphereGeometry(1, 64, 32);
  const material = new THREE.MeshBasicMaterial({map: texture});
  scene.add(new THREE.Mesh(geometry, material));
}
</pre>
<p>看过来, 当材质加载完成后才调用<code class="notranslate" translate="no">render</code>方法. 我们这么做是因为使用了<a href="rendering-on-demand.html">按需渲染</a>中的方法, 而不是连续渲染. 这样我们仅仅需要在材质加载后渲染一遍就好. </p>
<p>然后我们需要对代码做一些改动, 每个数据都画一个点, 而不是每个</p>
<p>然后我们需要修改上面每个数据点画一个点的代码, 改为每个数据点画一个框</p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">function addBoxes(file) {
  const {min, max, data} = file;
  const range = max - min;

  // 新建一个box geometry
  const boxWidth = 1;
  const boxHeight = 1;
  const boxDepth = 1;
  const geometry = new THREE.BoxGeometry(boxWidth, boxHeight, boxDepth);
  // 沿着z轴缩放
  geometry.applyMatrix4(new THREE.Matrix4().makeTranslation(0, 0, 0.5));

  // 位置辅助器可以方便地在球面上定位
  // 经度辅助器可以在XZ平面的法向旋转
  const lonHelper = new THREE.Object3D();
  scene.add(lonHelper);
  // 纬度辅助器可以在XZ平面旋转
  const latHelper = new THREE.Object3D();
  lonHelper.add(latHelper);
  // 组合起来得到的位置辅助器可以在球面上定位
  const positionHelper = new THREE.Object3D();
  positionHelper.position.z = 1;
  latHelper.add(positionHelper);

  const lonFudge = Math.PI * .5;
  const latFudge = Math.PI * -0.135;
  data.forEach((row, latNdx) =&gt; {
    row.forEach((value, lonNdx) =&gt; {
      if (value === undefined) {
        return;
      }
      const amount = (value - min) / range;
      const material = new THREE.MeshBasicMaterial();
      const hue = THREE.MathUtils.lerp(0.7, 0.3, amount);
      const saturation = 1;
      const lightness = THREE.MathUtils.lerp(0.1, 1.0, amount);
      material.color.setHSL(hue, saturation, lightness);
      const mesh = new THREE.Mesh(geometry, material);
      scene.add(mesh);

      // 调整辅助器使其指向经纬度
      lonHelper.rotation.y = THREE.MathUtils.degToRad(lonNdx + file.xllcorner) + lonFudge;
      latHelper.rotation.x = THREE.MathUtils.degToRad(latNdx + file.yllcorner) + latFudge;

      // 使用world matrix来操作辅助器
      positionHelper.updateWorldMatrix(true, false);
      mesh.applyMatrix4(positionHelper.matrixWorld);

      mesh.scale.set(0.005, 0.005, THREE.MathUtils.lerp(0.01, 0.5, amount));
    });
  });
}
</pre>
<p>上面的代码直截了当得从2D测试方法中改动过来</p>
<p>我们新建一个长方体, 然后沿着Z轴缩放. 如果我们不这么做, 它就会以中心为参照放大, 使得根部不在球面上. 我们这么做之后, 就可以达到从球面上长出来的效果. </p>
<div class="spread">
  <div>
    <div data-diagram="scaleCenter" style="height: 250px"></div>
    <div class="code">default</div>
  </div>
  <div>
    <div data-diagram="scalePositiveZ" style="height: 250px"></div>
    <div class="code">adjusted</div>
  </div>
</div>

<p>当然, 我们可以像<a href="scenegraph.html">场景图</a>一章中讲得, 通过添加到一个父对象来解决上面的问题. 但是要考虑到我们体系几何体非常得多, 所以会大大拖累运行的速度. </p>
<p>上面的位置辅助器<code class="notranslate" translate="no">positionHelper</code>是由<code class="notranslate" translate="no">lonHelper</code>, <code class="notranslate" translate="no">latHelper</code>逐级组合而来. 这个小东西可以帮助我们计算球面上的经纬度来放置几何体. </p>
<div class="spread">
  <div data-diagram="lonLatPos" style="width: 600px; height: 400px;"></div>
</div>

<p>上面的<span style="color: green;">绿条条</span>代表<code class="notranslate" translate="no">lonHelper</code>, 在赤道上以经度的变化旋转. The <span style="color: blue;">
蓝条条</span>代表 <code class="notranslate" translate="no">latHelper</code>, 在赤道上下以纬度的变化旋转. <span style="color: red;">红球球</span> 就是位置辅助器实际指向的位置. </p>
<p>我们倒是可以计算所有的球面位置, 但是需要涉及到很多数学和库的调用, 所以就...可以但没必要.</p>
<p>每一个数据我们都创建了一个<a href="/docs/#api/zh/materials/MeshBasicMaterial"><code class="notranslate" translate="no">MeshBasicMaterial</code></a>和一个<a href="/docs/#api/zh/objects/Mesh"><code class="notranslate" translate="no">Mesh</code></a>, 然后我们从位置辅助器中取得world matrix并应用到新的<a href="/docs/#api/zh/objects/Mesh"><code class="notranslate" translate="no">Mesh</code></a>上. 最后, 我们在它的新位置上缩放. </p>
<p>上面, 我们给每一个新box都创建了一个位置辅助器, 但是这将会使运行速度大大下降. </p>
<p>这最多有360x145=52000个盒子需要被创建. 有些点数据被标为 “NO_DATA” 所以实际的盒子数大概是19000左右. 如果我们每个盒子加上三个辅助器, 全局就大概80000个节点. 使用一组辅助器来调整mesh的位置我们可以节约60000个节点的计算. </p>
<p>注意<code class="notranslate" translate="no">lonFudge</code>是π/2也就是四分之一圈, 也就是说在在一周上是以不同的偏移开始. 也能说得通. 但是我不知道为什么<code class="notranslate" translate="no">latFudge</code>要乘以个 π * -0.135, 似乎就是一个能让盒子和材质对齐的数.</p>
<p>最后一步是调用loader</p>
<pre class="prettyprint showlinemods notranslate notranslate" translate="no">loadFile('resources/data/gpw/gpw_v4_basic_demographic_characteristics_rev10_a000_014mt_2010_cntm_1_deg.asc')
  .then(parseData)
-  .then(drawData)
+  .then(addBoxes)
+  .then(render);
</pre><p>当数据载入和解析完成, 我们再进行渲染</p>
<p></p><div translate="no" class="threejs_example_container notranslate">
  <div><iframe class="threejs_example notranslate" translate="no" style=" " src="/manual/examples/resources/editor.html?url=/manual/examples/lots-of-objects-slow.html"></iframe></div>
  <a class="threejs_center" href="/manual/examples/lots-of-objects-slow.html" target="_blank">点击此处在新标签页中打开</a>
</div>

<p></p>
<p>拖拽一下这个球你就会发现很卡</p>
<p>我们在<a href="debugging-javascript.html">开启调试工具</a>中提到过怎么打开帧率监视器</p>
<div class="threejs_center"><img src="../resources/images/bring-up-fps-meter.gif"></div>

<p>在我机器上大概是20帧每秒</p>
<div class="threejs_center"><img src="../resources/images/fps-meter.gif"></div>

<p>这不太行, 我寻思很多人机器上会更慢. 我们得想办法优化它一下子.</p>
<p>此时此景, 我们可以通过合并所有的盒子到一个geometry来实现, 一下子就可以省下18999个操作</p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">function addBoxes(file) {
  const {min, max, data} = file;
  const range = max - min;

-  // 新建一个几何体
-  const boxWidth = 1;
-  const boxHeight = 1;
-  const boxDepth = 1;
-  const geometry = new THREE.BoxGeometry(boxWidth, boxHeight, boxDepth);
-  // 沿着Z轴缩放
-  geometry.applyMatrix4(new THREE.Matrix4().makeTranslation(0, 0, 0.5));

  // 位置辅助器可以方便地在球面上定位
  // 经度辅助器可以在XZ平面的法向旋转
  const lonHelper = new THREE.Object3D();
  scene.add(lonHelper);
  // 纬度辅助器可以在XZ平面旋转
  const latHelper = new THREE.Object3D();
  lonHelper.add(latHelper);
  // 组合起来得到的位置辅助器可以在球面上定位
  const positionHelper = new THREE.Object3D();
  positionHelper.position.z = 1;
  latHelper.add(positionHelper);
+  // 用来定位盒子的中心, 以便接下来沿着Z轴缩放
+  const originHelper = new THREE.Object3D();
+  originHelper.position.z = 0.5;
+  positionHelper.add(originHelper);

  const lonFudge = Math.PI * .5;
  const latFudge = Math.PI * -0.135;
+  const geometries = [];
  data.forEach((row, latNdx) =&gt; {
    row.forEach((value, lonNdx) =&gt; {
      if (value === undefined) {
        return;
      }
      const amount = (value - min) / range;

-      const material = new THREE.MeshBasicMaterial();
-      const hue = THREE.MathUtils.lerp(0.7, 0.3, amount);
-      const saturation = 1;
-      const lightness = THREE.MathUtils.lerp(0.1, 1.0, amount);
-      material.color.setHSL(hue, saturation, lightness);
-      const mesh = new THREE.Mesh(geometry, material);
-      scene.add(mesh);

+      const boxWidth = 1;
+      const boxHeight = 1;
+      const boxDepth = 1;
+      const geometry = new THREE.BoxGeometry(boxWidth, boxHeight, boxDepth);

      // 调整位置辅助器的指向
      lonHelper.rotation.y = THREE.MathUtils.degToRad(lonNdx + file.xllcorner) + lonFudge;
      latHelper.rotation.x = THREE.MathUtils.degToRad(latNdx + file.yllcorner) + latFudge;

      // 使用world matrix来操作辅助器
      positionHelper.updateWorldMatrix(true, false);
      mesh.applyMatrix4(positionHelper.matrixWorld);
      mesh.scale.set(0.005, 0.005, THREE.MathUtils.lerp(0.01, 0.5, amount));

+      // 使用位置辅助器和world matrix 来定位
+      positionHelper.scale.set(0.005, 0.005, THREE.MathUtils.lerp(0.01, 0.5, amount));
+      originHelper.updateWorldMatrix(true, false);
+      geometry.applyMatrix4(originHelper.matrixWorld);
+
+      geometries.push(geometry);
    });
  });

+  const mergedGeometry = BufferGeometryUtils.mergeGeometries(
+      geometries, false);
+  const material = new THREE.MeshBasicMaterial({color:'red'});
+  const mesh = new THREE.Mesh(mergedGeometry, material);
+  scene.add(mesh);

}
</pre>
<p>我们移除了之前用来改变盒子几何中心的代码, 取而代之的是<code class="notranslate" translate="no">originHelper</code>. 这次我们要为每个长方体创建新的几何体, 因为我们要使用“applyMatrix”来移动每个长方体几何体的顶点, 所以我们最好只移动一次, 而不是两次.</p>
<p>最后, 我们将所有几何体的数组传入<code class="notranslate" translate="no">BufferGeometryUtils.mergeGeometries</code>, 这个方法将会将其合并到一个mesh中</p>
<p>别忘了引入<code class="notranslate" translate="no">BufferGeometryUtils</code></p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">import * as BufferGeometryUtils from 'three/addons/utils/BufferGeometryUtils.js';
</pre>
<p>现在, 至少在我的机器上, 可以跑到60帧每秒了</p>
<p></p><div translate="no" class="threejs_example_container notranslate">
  <div><iframe class="threejs_example notranslate" translate="no" style=" " src="/manual/examples/resources/editor.html?url=/manual/examples/lots-of-objects-merged.html"></iframe></div>
  <a class="threejs_center" href="/manual/examples/lots-of-objects-merged.html" target="_blank">点击此处在新标签页中打开</a>
</div>

<p></p>
<p>虽然可以了, 但是我们这是一整个mesh, 所以我们只能应用一个材质, 意味着我们只能有一种颜色的盒子. 我们之前可是能有不同颜色的盒子. 我们可以通过使用顶点着色法来解决. </p>
<p>顶点着色向每个顶点添加一种颜色. 通过设定每个盒子的每个顶点的所有颜色来指定每个盒子的颜色. </p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">+const color = new THREE.Color();

const lonFudge = Math.PI * .5;
const latFudge = Math.PI * -0.135;
const geometries = [];
data.forEach((row, latNdx) =&gt; {
  row.forEach((value, lonNdx) =&gt; {
    if (value === undefined) {
      return;
    }
    const amount = (value - min) / range;

    const boxWidth = 1;
    const boxHeight = 1;
    const boxDepth = 1;
    const geometry = new THREE.BoxGeometry(boxWidth, boxHeight, boxDepth);

    lonHelper.rotation.y = THREE.MathUtils.degToRad(lonNdx + file.xllcorner) + lonFudge;
    latHelper.rotation.x = THREE.MathUtils.degToRad(latNdx + file.yllcorner) + latFudge;

    positionHelper.scale.set(0.005, 0.005, THREE.MathUtils.lerp(0.01, 0.5, amount));
    originHelper.updateWorldMatrix(true, false);
    geometry.applyMatrix4(originHelper.matrixWorld);

+    // 计算颜色
+    const hue = THREE.MathUtils.lerp(0.7, 0.3, amount);
+    const saturation = 1;
+    const lightness = THREE.MathUtils.lerp(0.4, 1.0, amount);
+    color.setHSL(hue, saturation, lightness);
+    // 以0到255之间的值数组形式获取颜色
+    const rgb = color.toArray().map(v =&gt; v * 255);
+
+    // 创建一个数组来存储每个顶点的颜色
+    const numVerts = geometry.getAttribute('position').count;
+    const itemSize = 3;  // r, g, b
+    const colors = new Uint8Array(itemSize * numVerts);
+
+    // 将颜色复制到每个顶点的颜色数组中
+    colors.forEach((v, ndx) =&gt; {
+      colors[ndx] = rgb[ndx % 3];
+    });
+
+    const normalized = true;
+    const colorAttrib = new THREE.BufferAttribute(colors, itemSize, normalized);
+    geometry.setAttribute('color', colorAttrib);

    geometries.push(geometry);
  });
});
</pre>
<p>上面的代码中, 我们查找几何体中的<code class="notranslate" translate="no">position</code>属性来获取所需的数量和顶点. 然后创建一个<code class="notranslate" translate="no">Uint8Array</code>来输入颜色. 接下来通过调用<code class="notranslate" translate="no">geometry.setAttribute</code>来将其设定为一个属性. </p>
<p>最后告诉three.js使用顶点上色. </p>
<pre class="prettyprint showlinemods notranslate lang-js" translate="no">const mergedGeometry = BufferGeometryUtils.mergeGeometries(
    geometries, false);
-const material = new THREE.MeshBasicMaterial({color:'red'});
+const material = new THREE.MeshBasicMaterial({
+  vertexColors: true,
+});
const mesh = new THREE.Mesh(mergedGeometry, material);
scene.add(mesh);
</pre>
<p>我们的彩色世界回来啦!</p>
<p></p><div translate="no" class="threejs_example_container notranslate">
  <div><iframe class="threejs_example notranslate" translate="no" style=" " src="/manual/examples/resources/editor.html?url=/manual/examples/lots-of-objects-merged-vertexcolors.html"></iframe></div>
  <a class="threejs_center" href="/manual/examples/lots-of-objects-merged-vertexcolors.html" target="_blank">点击此处在新标签页中打开</a>
</div>

<p></p>
<p>合并几何体是一个常见的优化手段. 比如, 可以将一百多棵树合并成一个几何体, 一堆石头合并成一块石头, 零零碎碎的栅栏合并成一个栅栏的mesh. 另一个例子是Minecraft并不是一个一个方块去绘制, 而是创建一组合并了的方块, 当然之前选择性地移除那些看不见的. </p>
<p>这么做带来的问题是, 合并起来简单, 分离难. 接下来我们再引入一种优化方案
<a href="optimize-lots-of-objects-animated.html">优化大量动画对象</a>.</p>
<p><canvas id="c"></canvas></p>
<script type="module" src="../resources/threejs-lots-of-objects.js"></script>
        </div>
      </div>
    </div>
  
  <script src="../resources/prettify.js"></script>
  <script src="../resources/lesson.js"></script>




</body></html>